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Abstract. Surfaces in close proximity exchange heat through evanescent photon tunnelling modes
as well as by freely propagating modes. These additional near field contributions to radiation scale
with separation,d, between surfaces asd−2 and are dominant at spacingsd � λT , a typical
wavelength at temperatureT . We calculate simple expressions for the photon tunnelling and find
that there are drastic effects in many nanostructured systems, for example in the scanning tunnelling
microscope. The results are linked to quantum information theory which dictates that the maximum
heat tunnelling current in any one channel is determined by the temperature alone. Consequences for
the scanning tunnelling microscope are discussed, where a hot tip may cause intense local heating
of a surface without actually being in physical contact, hence desorbing molecular species, or even
modifying the surface itself: a possible extension of the STM’s capacity for surface modification.
A further extension of this concept is proposed in the form of a ‘heat stamp’ capable of delivering
a high definition pattern of heat to a second surface.

1. Introduction

Every physics undergraduate knows Stefan’s law [1] which states that a hot black surface will
radiate according to the law,

Q̇BB = π2k4
B

60h̄3c2
0

T 4 (1)

wherekB is Boltzmann’s constant, ¯h Planck’s constant divided by 2π andc0 the velocity of
light in free space. Two black bodies with parallel surfaces (figure 1) will exchange heat
according to this law independent of the distance,d, between them. The vacuum can be said
to have a thermal conductivity.

In this paper we point out that heat transport across the vacuum is not independent ofd

when,

d < λT = 2πc0h̄

kBT
. (2)

λT is the wavelength characteristic of temperatureT . We shall show that outside the surface
of a dissipative material there are electromagnetic modes that decay exponentially into the
vacuum. Provided that the surfaces are close enough, heat can also be transported by photons
tunnelling through evanescent modes. At low temperatures of a few K it is possible for this
form of transport to be dominant even at spacings of a few mm, see table 1.

We imagine that photon tunnelling is important in situations where surfaces are in close
proximity in vacuo. For example if two otherwise flat surfaces are pressed together in the
presence of microscopic insulating granules, then heat conduction can be expected to be
dominated by tunnelling. Alternatively we might consider nanoscopic structures so common

0953-8984/99/356621+13$30.00 © 1999 IOP Publishing Ltd 6621



6622 J B Pendry

Figure 1. There are two modes for exchange of heat between two surfaces separated by vacuum:
conventional radiative transfer, or photon tunnelling via evanescent states. The latter dominate at
short distances. See table 1.

Table 1. Critical distance for evanescent waves to dominate. At distances of a few nanometres,
radiative heat flow is almost entirely due to evanescent modes.

T (K) λT (µm)

1 2289.8
4.2 545.2

100 22.9
273 8.4

1000 2.3

in experimental electronic devices, or the scanning tunnelling microscope [2], where all the
relevant dimensions are no more than a few nm. In a related device, the scanning near
field optical microscope [3, 4], light is carried from one medium to the next by evanescent
modes. For objects that are very close together the black body radiation formula is completely
irrelevant to heat transport, and photon tunnelling will be the dominant mode. Interaction
between the STM and electromagnetic radiation has been demonstrated at optical frequencies
[5, 6].

Photon tunnelling was considered some time ago by Polder and Van Hove [7] who
calculated the tunnelling between two flat surfaces. However, although their expression
for heat conduction is equivalent to mine, their approach was very different. The
present derivation offers an alternative insight and is a little more compact. Since the
pioneering work of Polder and Van Hove experiments on nanostructures have come to
prominence greatly increasing the relevance of photon tunnelling which dominates heat
transfer between these structures. It is now possible to measure extremely small amounts
of heat transfer into small volumes [8]. In later sections of the paper we consider different
geometries which may be relevant to nanostructures such as a sphere outside a surface.
We also show links between photon tunnelling and the recently explored quantum friction
[9, 10].

A striking new result we find is the limiting heat flux that a single channel can sustain.
Analogous to the maximum radiative power that a black body provides, the conditions for
limiting heat flux for tunnelling modes are quite different. The existence of a maximum heat
flux was predicted some time ago [11] on very general grounds of quantum information theory
and the limiting flux we calculate here is consistent with the earlier work.
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2. Tunnelling between two transparent dielectrics

The concept of photon tunnelling can be neatly illustrated by considering a transparent
dielectric such as glass: see figure 2. Within the dielectric black body radiation has a higher
density than in vacuum as can be seen from formula (1): if the velocity of light is reduced,
the density of radiation increases. The extra radiation is contained in waves that have large
wave vectors parallel to the lower surface. Since parallel wave vector is conserved across a
flat surface these modes cannot escape into vacuum and experience total internal reflection.
Thus the surface carefully rejects just the right amount of radiation to ensure that the density
of black body radiation emerging into vacuum does not exceed that allowed by formula (1).

Figure 2. Evanescent waves play no role in heat loss from a hot dielectric surface to vacuum, left
hand figure, but evanescent waves can carry heat from a hot to a cold dielectric surface, right hand
figure.

It is well known that a second dielectric, if close enough to the first one, will allow the
total internal reflection condition to be relaxed as some of the photons tunnel across into the
second medium. In the limit that the two dielectrics are in contact all the modes tunnel across
without impediment.

The introduction of tunnelling modes associated with large wave vectors parallel to
surfaces makes an important point: each wave vector corresponds to a channel, or mode,
through which heat can flow. Very good conductors of heat are characterized by having many
channels. For example heat flow through a solid may be via the phonons as in sapphire. In
general phonons have much smaller wave vectors at a given frequency than does light and
therefore there are many more modes accessible at a given temperature for transport of heat.
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Dissipation implies
charge fluctuations

Resistive material

Figure 3. Resistive media also have evanescent waves outside their surfaces. In fact they are a
much more potent source of evanescent waves because they support very short wavelength states
not found near dielectrics. These fluctuations are the nanoscopic equivalent of Johnson noise.

For light the wave vector normal to a surface is given by

Kz = +
√
ω2εc−2

0 − k2 (3)

whereω is the frequency of the light,ε the dielectric function of the medium andk the wave
vector parallel to the surface. ObviouslyKz ceases to be real when

k > ωc−1
0

√
ε (4)

and large wave vector modes are thus not available for radiative transfer of heat. If we introduce
tunnelling the situation is quite different. If only we can activate the large wave vector modes,
and require that the distance they have to transport the heat is very small, it does not matter
that the waves decay exponentially.

If we seek materials that have a high density of large wave vector modes immediately
outside their surfaces, transparent dielectrics are not good candidates. Maybe if the dielectric
function is large a few more modes can be squeezed into the picture but generally speaking we
must look to other materials for really large effects.

The key materials are resistive conductors. Within a resistor fluctuations in electron
density create a high density of electromagnetic fields. One instance of these fields is the
Johnson noise that is measured across a resistor at finite temperatures. Since electrons may
have very large wave vectors it is often the case that the density fluctuations extend to short
wavelengths and hence so do the electromagnetic fluctuations: see figure 3.

By tuning the resistivity of the material we can optimize the number of short wavelength
modes and hence the potential for heat transport by tunnelling. The energy density at distance
d for wave vectork and frequencyω is proportional to

ImRp(k, ω)exp(−kd) (5)

whereRp(k, ω) is the reflection coefficient of the surface at wave vectork and frequencyω,
and

ImRp(k, ω) ≈ 2σ/ωε0

4 + (σ/ωε0)2
k � ω

c0
. (6)
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Figure 4. The importance of short wavelength fluctuations: at short distances, evanescent states
dominate in phase space: propagating photon modes carry heat flux within the inner circle,
evanescent modes within the outer circle.

It is generally assumed that the conductivity,σ , is independent of(k, ω) over a wide range of
values.

The energy density is a maximum when

σmax= 2ωε0 ≈ 2kBT ε0

h̄
= 2.3T (m�)−1 (7)

where we have substituted a frequency typical of temperatureT . At room temperature the
optimum electrical conductivity is 690(m�)−1.

Figure 4 makes the point that the number of channels available to conduct heat may be
very much larger for the evanescent modes than for the propagating modes provided that the
objects concerned are separated by a short distance.

3. Calculating the tunnelling between two surfaces

Consider two flat surfaces, parallel to each other, separated by distanced. They have reflection
coefficientsR1(k, ω), R2(k, ω). Suppose that surface 1 ‘emits’ a p-polarized electromagnetic
wave whose electric field is given by

Ep = E0pK̂
+
p exp(ik · r‖ − αz) (8)

where

α = +
√
k2 − ω2c−2

0 (9)

and

K̂±p =
ic0α

ωk
[kx, ky,±ik2α−1] (10)
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is the polarization vector normalized to unity,

K̂+
p · K̂+

p = 1. (11)

Note that we already assume that we are in the regime of decaying waves, i.e.,

k2 > ω2c2
0. (12)

Reflection from the second surface, and further contributions from multiple reflections between
the two surfaces modify the wavefield,

E′p = E0p[K̂+
p exp(ik · r‖ − αz) +R2p(k, ω)K̂

−
p exp(ik · r‖ + αz− 2αd)]

×[1− R1p(k, ω)R2p(k, ω)]
−1. (13)

We assume for simplicity that polarization is conserved and leave generalization to optically
active media as an exercise.

Calculating the Poynting vector for this field gives the flow of energy,

q̇p(k, ω) = 2|E0p|2
ωµ0

α e−2αd ImR2p(k, ω)

|1− R1p(k, ω)R2p(k, ω)e−2αd |2 . (14)

The question arises of what is the value of|E0p|2? This we calculate by using the
electromagnetic Green function to calculate the density of states outside the first surface [9],
then populating each state with energy

h̄|ω|
[

1

2
+

1

exp(βh̄|ω|)− 1

]
(15)

to give

|E0p|2 = h̄|ω|
[

1

2
+

1

exp(βh̄|ω|)− 1

]
ω ImR1p(k, ω)

ε0c
2
0α

2

π
. (16)

Hence,

q̇p(k, ω) = 8h̄|ω|
π

[
1

2
+

1

exp(βh̄|ω|)− 1

]
e−2αd ImR1p(k, ω) ImR2p(k, ω)

|1− R1p(k, ω)R2p(k, ω)e−2αd |2 . (17)

The expression for tunnelling through the s-polarized channel is exactly the same except thatRs
(the s-polarized reflection coefficient) is substituted forRp. However note that for evanescent
statesRs andRp are very different and for largek the p-channel is predominantly electrostatic
and is dominant unless we are dealing with a magnetic material where the s-channel is also
active.

The complete heat transfer from surface 1 to 2 via evanescent states is

Q̇EV (T , d) =
∑
k

∫ ∞
0

[q̇p(k, ω) + q̇s(k, ω)] dω. (18)

This completes the formal derivation.
Our formula for heat flow, (17), is reminiscent of the formula for quantum friction between

two moving surfaces [9]. In both cases the coupling between the surfaces is given by the overlap
of the density of states, as modified by multiple scattering between the two surfaces expressed
in the final fraction in (17).
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4. Maximum heat flow in a channel and quantum information theory

In the case of heat transfer through free photons, the transfer is maximal when both bodies are
perfectly black and have zero reflection coefficient,

R2
i +R2

r = 0 k < ωc−1
0 . (19)

What is the photon tunnelling equivalent of a black body? Fork > ωc−1
0 there are no constraints

on the reflection coefficientR(k, ω)other than that ImR(k, ω) is positive. Therefore, assuming
identical surfaces, we are free to maximize

X = e−2αd(ImR)2

|1− R2 e−2αd |2 . (20)

The result is very simple: the expression is a maximum when

R2
i +R2

r = e2αd k > ωc−1
0 (21)

so that

X = 1
4. (22)

Substituting gives

[Q̇EV ]max=
∑
k

πk2
B

3h̄
T 2. (23)

In the electrostatic limit,k > ωc−1
0 ,

Rp(ω) ≈ ε(ω)− 1

ε(ω) + 1
.

we can specify a dielectric function whose surface reflectivity satisfies the maximum condition:

2εr
ε2
i + ε2

r + 1
= − tanh(αd) (24)

or explicitly,

εr = − 1

tanh(αd)
±
√(

1

tanh(αd)

)2

− (ε2
i + 1). (25)

At d = 0 the condition is even simpler,

εmax= (εr = 0) + iεi . (26)

Note that this choice ofε definitely does not result in a surface that absorbs all the propagating
photons, even though it optimizes flow in the photon tunnelling channels. The optimum choice
is realized at low frequencies for materials having finite conductivity,σ , where

εmetal= 1 + i
σ

ωε0
(27)

so that the imaginary component dominatesε. Under these circumstances it is possible to
optimize the heat flow for all channels such that

exp(−αd) ≈ 1. (28)

The result that there is a maximum heat flow in a given channel links with more profound
ideas of entropy flow. Some time ago [11] it was shown from very general arguments that
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the maximum flow of entropy in a single channel is linked to the flow of energy. Briefly the
argument was that the flow of information in a channel is limited by

Ė > 3h̄ ln2 2

π
İ 2 (29)

whereĖ is the energy flow anḋI the information flow. Identifying the energy flow with heat
flow, Q̇,

Ė = Q̇ İ = Q̇

kBT ln 2
(30)

we have

Q̇ 6 πk2
BT

2

3h̄
(31)

hence as above,

[Q̇EV ]max=
∑
k

πk2
B

3h̄
T 2 (32)

assuming only p-polarized modes are active. Therefore our result is interpreted as conducting
the maximum allowed amount of entropy per channel. Naturally if we sum over all channels
there is a divergence unless there is a cut-off ink which would be given by the properties of
the material.

5. Local heating of a surface by an STM tip

Let us suppose that a hot scanning tunnelling microscope tip travels over a cool surface, which
may have molecules adsorbed upon it. If the heat flow is sufficiently great the surface may
be raised to a substantial fraction of the tip’s temperature, resulting in local desorption or
decomposition of molecular species. Heat crosses from the tip to the surface via a tunnelling
mechanism, just like the electrons responsible for the STM’s operation, and similarly confined
to the area of the surface immediately under the tip. Figure 5 illustrates the situation.

Scanning tunneling
microscope  tip

Adsorbed 
molecule

Figure 5. A hot scanning tunnelling microscope tip moves over a surface. Local heating may result
in desorption of molecules. The STM tip is shown surrounded by the localized electromagnetic
tunnelling modes.
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2a

d

Figure 6. A small hot sphere heats a nearby surface via evanescent modes providing it is close
enough.

The ability to introduce highly localized sources of heat, far more finely focused than
could be achieved with a lens and free radiation, offers further possibilities for the STM to
control local chemistry on a surface. Furthermore the STM offers the possibility of not only
modifying the local surface conditions through heating, but also of observing the changes
through subsequent scans.

To investigate the power of a hot tip to heat a surface we need some quantitative estimates
of the heat flow. To this end we model the tip as a hot sphere of the same radius as the tip, see
figure 6. This is a common approximation when calculating tunnelling current and the same
arguments justify its use for calculating heat tunnelling. Therefore we wish to calculate the
rate at which a hot sphere does work on a surface. For simplicity we assume that the sphere is
positioned sufficiently far from the surface that only dipole modes of the sphere are excited.
We also assume that we are close enough to the surface that we are in the electrostatic limit.

Hence,

a � d (33)

and,

d � c0ω
−1. (34)

The contribution to the heat flow from tip to surface will be dominated by the tunnelling modes
which in the appendix we calculate to be

Q̇ST ≈ 2π3a3k4
BT

4

5d3h̄3

ε2
0

σsσ
(35)

whereT is the tip temperature and we have assumed that

σ > ε0kBT h̄
−1. (36)

If we assume the following parameters typical of a tungsten tip 1 nm above a tungsten surface,

T = 300 K

d = 10−9 m

a = 0.5 d

σs = σ = 105 (m�)−1 (37)
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and that the surface is cold so that there is no back flow of heat,

Q̇ST ≈ 8.536× 10−17 watts (38)

the flow of heat will be confined to a very small area of diameter approximately the tip surface
separation,d, and therefore the flux per unit area is

Q̇ST /area≈ Q̇ST /d
2 ≈ 8.536 W m−2. (39)

We could compare this to the heating when the surface is illuminated with black body radiation
at 300 K, roughly taking account of the surface reflectivity by approximating

|R|2 ≈
∣∣∣∣1−√ε1 +
√
ε

∣∣∣∣2 = ∣∣∣∣1−√1 + iσs/ωε0

1 +
√

1 + iσs/ωε0

∣∣∣∣2 ≈ 1− 2

√
2kBT ε0

h̄σs
. (40)

Hence the rate of heating from black body radiation is approximately

Q̇BB(1− |R|2) ≈ 4.5917× 102 × 1.213× 10−2 W m−2 = 5.57 W m−2. (41)

Thus we expect to see some local enhancement of heating over that expected from uniform
black body radiation.

However, and this is an important point, we can produce very much larger effects if the
conductivity of the tip is tuned to the temperature. From (35) we see that the heating is inversely
proportional to the conductivity of the tip provided that the inequality (36) for the conductivity
is obeyed. In fact the effect will be a maximum when

σ ≈ ε0kBT h̄
−1 = 347.8 (m�)−1. (42)

Conductivities of this order are typical of semimetals such as carbon, or of composites. In
fact only a thin coating of the right conductivity would be required and this might comprise
an adsorbate from the gas phase. Assuming that we can achieve a tip with the requisite
conductivity, substituting gives

Q̇STmax/area≈ 1.89× 107

347.8
85.36 W m−2 = 4.64× 106 W m−2. (43)

In other words by tuning the conductivity a tip can deliver a heat flow to the surface hugely
enhanced relative to that available from black body radiation at the same temperature.

6. A nanoscale ‘heat stamp’

It has recently been proposed [12] that near field optics could be exploited to write extremely
fine details for integrated circuits. The concepts are similar to those outlined above:
components of the electromagnetic field having short wavelength (and therefore the potential
for high resolution) are naturally evanescent in nature and do not contribute to far field effects.
Hence fine details in any patterned mask will rapidly dissolve away with distance from the
mask. However if it is possible to position the wafer close to the mask then fine details can
be resolved. Roughly speaking the separation between mask and wafer must be of the same
order as the lateral detail to be resolved.

Once the propagating modes have been abandoned as the means of transporting radiation,
the frequency plays little role in determining resolution which is now almost entirely dependent
on separation. Therefore it is possible to imagine a mask consisting of a surface patterned
alternately in highly reflecting (and therefore poorly emitting) material, and a second material
chosen to optimize emission of heat into the evanescent modes as discussed above. A second
surface placed under and very close to the mask will be preferentially heated beneath the active
regions: see figure 7.
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hot patterned mask

Wafer surface selectively heated

Figure 7. A mask is patterned using two materials: one that is a poor emitter of evanescent waves
at the ambient temperature, another that is a good emitter. A wafer placed close to the mask will be
selectively heated beneath the good emitter, an effect that may possibly be exploited to selectively
etch the wafer to much higher resolution than possible with conventional methods.

This proposal leaves unanswered the question of how the two surfaces would be controlled
to such a fine separation, but nevertheless offers additional possibilities for etching structures
with very fine resolution.

7. Conclusions

The propagation of heat through a vacuum is strongly modified when surfaces come closer
than the characteristic wavelength of the thermal radiation. At short distances new modes, the
photon analogy of electron tunnelling in the STM, contribute to the heat current. For structures
whose dimensions are just a few nanometres the tunnelling modes will usually dominate and
give greatly enhanced heat flow particularly if the conductivity of the materials concerned is
tuned to maximize the heat flow due to tunnelling. Characteristically at room temperature this
implies conductivities typical of semimetals such as carbon, or of metal–insulator composites.
In this way highly localized heating can be produced by an STM tip which may be exploited
for the purpose of surface modification. An extension of this idea is suggested in the form of
a ‘heat stamp’ that has nanometric resolution and may be exploited to etch wafers in much the
same manner as the ‘optical stamp’ [12].

The concept of photon tunnelling between surfaces also links to more fundamental matters.
Just as we can define the optimum emitter of free radiation as the perfect absorber, i.e. a
black body, so we can define a surface designed to maximize the tunnelling of heat. The
conditions are somewhat different but have a common origin in quantum information theory.
The maximum heat flow through a single tunnelling mode is dictated only by the temperature
and the fundamental constants.
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Appendix

We wish to calculate the rate at which a hot surface does work on a sphere positioned sufficiently
far form the surface that only dipole modes are excited. We also assume that we are close
enough to the surface that we are in the electrostatic limit. We can calculate the rate of cooling
of a sphere using the same formula by reciprocity.

We require,

a � d d � c0ω
−1. (A1)

First we calculate the heating of the sphere caused by an incident wave of the form

E = E0pK̂
+
p exp(ik · r‖ − αz) (A2)

where in the electrostatic limit,

K̂+
p =

c0

ω
[kxky iα = +i

√
k2
x + k2

y ]. (A3)

Since we are in the electrostatic limit we can write the electric field in terms of a potential,

φ = −E0p|K̂+
p|r cos(θ) (A4)

where

|K̂+
p|2 = K̂+

p · K̂+∗
p =

c2
0(k

2 + α2)

ω2
(A5)

and match fields inside,

Ein|K̂+
p|r cos(θ) (A6)

and outside,

Eout |K̂+
p|r−2 cos(θ)− E0p|K̂+

p|r cos(θ) (A7)

the sphere. Matching the field and its derivative on the surface of the sphere,

Eina = −E0pa +Eouta
−2

εEin = −E0p − 2Eouta
−3 (A8)

gives

Ein = −3

ε + 2
E0p

Eout = −a
3

3
(ε − 1)Ein = +a3

3

ε − 1

ε + 2
E0p. (A9)

Rate of working:

P =
∫
|E|2ωε0 Im ε d3r = ωε0

∣∣∣∣ 3

ε + 2

∣∣∣∣2 Im ε
4

3
πa3|E0p|2 c

2
0(k

2 + α2)

ω2

= 12πa3ωε0
εi

(εr + 2)2 + ε2
i

|E0p|2 c
2
0(k

2 + α2)

ω2
. (A10)

From earlier in the paper,

|E0p|2 = h̄|ω|
[

1

2
+

1

exp(βh̄|ω|)− 1

]
ω ImR1p(k, ω)

πε0c
2
0α

exp(−2αd). (A11)

Hence,

P = 12a3

c2
0α

εi ImR1p

(εr + 2)2 + ε2
i

c2
0(k

2 + α2)

ω2

h̄|ω|ω2

exp(βh̄|ω|)− 1
exp(−2αd). (A12)
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We now specialize to the case of a sphere of conductivity above a surface of conductivityσs
so that

ε = 1 + i
σ

ωε0
(A13)

ImR1p(k, ω) = Im
εs − 1

εs + 1
= Im

iσs
2ωε0 + iσs

≈ 2ωε0

σs
(A14)

where we have assumed that

σ � 2ωε0 σs � 2ωε0. (A15)

Substituting,∫ ∞
0
P dω ≈ 24a3

α

ε2
0

σsσ
(k2 + α2) exp(−2αd)h̄−3k4

BT
4
∫ ∞

0

x3 dx

exp(x)− 1
. (A16)

Using ∫ ∞
0

x3 dx

exp(x)− 1
= π4

15
(A17)

we find ∫ ∞
0
P dω ≈ 8π4a3k4

BT
4

5h̄3

ε2
0

σsσ
(k2 + α2)α−1 exp(−2αd). (A18)

Finally, ∑
k

∫ ∞
0
P dω ≈ 2π3a3k4

BT
4

5d3h̄3

ε2
0

σsσ
. (A19)
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